Tiaan Bezuidenhout

 (®)bezmcๆヨagmail com \#meertrap.org

single puls localisation

Abstract:

Ünlike, traditional, single-dish radio telescopes, interferométers combine the signals of multiple - antennas. The result is á "fly's eye" view of the sky made up of many "beams" tiled over a. relatively large field of view.

Transient surveys like MeerTRAP use interferometers to monitor the sky for brief flashes of radio waves from sources like the mysterious Fast Radio Bursts.

I show how single pulses from such sources can be localised to within a few arcseconds without imaging the region.

Tied-Array Beam Localisation (TABLo) method

Suppose a source is detected with signal-to-noise ratios S_{1} and S_{2} in two beams with PSFs P_{1} and P_{2}, respectively.

The source must be located somwhere that $P_{1} / P_{2}=S_{1} / S_{2}$.
The coloured regions below show where P_{1} / P_{2} is within 1- σ of S_{1} / S_{2} for each pair of beams.
Incorporating more beams adds more contours that overlap to narrow down possible locations.

2 beams

Right Ascension (${ }^{\circ}$)

3 beams

RA (${ }^{\circ}$)

PSR B0450-18

This pulse from PSR B0450-18 was detected using the MeerTRAP single pulse detection pipeline in 34 beams at once (561 beam pairs).

Adding the curves together and finding the maximum gives a localisation to a precision of a few arcseconds.
This is unprecedented precision for single-pulse localisation without recourse to imaging.

