Tiaan Bezuidenhout

PhD Student	
MANCH	HESTER 1824
The University of Manchester	
* * * * * * * *	Erc European Research Council

∂mc_bezuidenhout)bezmc93∂gmail.com)meertrap.org Image credit: ICRAR/University of Amsterdam

MEERTRAP

radio interferometers and single pulse localisation

Abstract:

Unlike traditional, single-dish radio telescopes, interferometers combine the signals of multiple antennas. The result is a "fly's eye" view of the sky made up of many "beams" tiled over a relatively large field of view.

Transient surveys like MeerTRAP use interferometers to monitor the sky for brief flashes of radio waves from sources like the mysterious Fast Radio Bursts.

I show how single pulses from such sources can be localised to within a few arcseconds without imaging the region.

🛨 source antennas

٠

MeerKAT telescope, South Africa horizon

By adding different delays to the signals received by each antenna before they are convolved, a coherent beam is focused at the desired position.

Beamforming

Knowing the setup of the telescope for a given observation, we can simulate the spacial dependence of a beam's sensitivity, or its Point Spread Function

Tied-Array Beam Localisation (TABLo) method

Suppose a source is detected with signal-to-noise ratios S_1 and S_2 in two beams with PSFs P_1 and P_2 , respectively.

The source must be located somwhere that $P_1/P_2 = S_1/S_2$.

The coloured regions below show where P_1/P_2 is within 1- σ of S_1/S_2 for each pair of beams.

Incorporating more beams adds more contours that overlap to narrow down possible locations.

This pulse from PSR B0450-18 was detected using the MeerTRAP single pulse detection pipeline in 34 beams at once (561 beam pairs).

Adding the curves together and finding the maximum gives a localisation to a precision of a few arcseconds.

This is unprecedented precision for single-pulse localisation without recourse to imaging.